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Goiânia, Brazil

Abstract—Wake word detection is a critical component for
voice-activated robotic systems. However, the lack of diverse
datasets and Text-to-Speech (TTS) models in non-English lan-
guages, such as Portuguese, poses significant challenges for
developing accurate models. This paper proposes a novel and
streamlined pipeline for the creation of wake word models,
inspired by the OpenWakeWord framework, which leverages
synthetically generated datasets to train neural models. Unlike
existing approaches, our method employs a zero-shot TTS model
capable of producing high-quality audio across 17 languages
and a broad range of speaker styles, effectively simulating
a multi-speaker environment. In contrast to OpenWakeWord,
which relies on English-centric data and fixed voice banks, our
approach introduces multilingual support and greater speaker
variability without requiring speaker enrollment. We also detail
the integration of this pipeline with the Robot Operating System
2 (ROS 2), enabling real-time robotic applications. Experimental
results show that our models achieve an F1-score of up to 0.91
using purely synthetic data, demonstrating the viability and
effectiveness of our method. This work highlights the potential
of synthetic data generation to advance voice interaction in
languages with limited resources, with a particular focus on the
field of robotics in Brazil.

Index Terms—Zero-Shot Text-to-Speech, ROS2, Wakeword

I. INTRODUCTION

Human-robot interaction (HRI) is a fundamental component
of most robotic applications, whether for control, communi-
cation, or automation. Specific words or phrases that activate
robotic systems, known as wakewords, have become a key
element of modern HRI. While many existing frameworks
facilitate the training of custom wakewords, they are primarily
designed for English, creating challenges for speakers of other
languages, such as Portuguese. As a result, users may struggle
with pronunciation, or the model’s performance may degrade
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due to difficulties in adapting to variations in speaker accents
and speech patterns. This not only limits their applicability to
underrepresented languages such as Portuguese but also results
in a lack of adaptability to specific linguistic needs.

To address these challenges, we introduce a flexible and
efficient pipeline that combines synthetic data generation via
XTTS [6] a Zero-Shot Text-to-Speech (TTS) model, training
with the OpenWakeWord [3] methodology, and deployment
in robotics environments using ROS 2 [11]. By eliminating
reliance on pre-existing wakeword systems, our approach
enables customizable solutions for underrepresented languages
in HRI applications.

Our experiments show that XTTS-based models signifi-
cantly outperform both the OpenWakeWord [3] baseline and
the commercial Porcupine [19] system, especially when us-
ing a phoneme-based strategy for negative samples. These
results validate the effectiveness of our pipeline for ro-
bust wakeword detection in low-resource linguistic set-
tings. The source code is available at: https://github.com/
Pequi-Mecanico-Home/CROS 2025.

Unlike conventional approaches, our work focuses on train-
ing a wakeword model for a less common language by leverag-
ing synthetically generated data to compensate for the scarcity
of real-world datasets. This strategy enhances adaptability to
specific linguistic contexts while yielding notable performance
gains. Furthermore, our approach is compatible with all 17
languages supported by the XTTS [6] zero-shot TTS model,
broadening its applicability across diverse linguistic contexts.

The practical implications of this methodology are sig-
nificant, particularly for promoting the inclusion of under-
represented languages in voice recognition technologies. By
providing an adaptable solution, this work aims to inspire
further research and applications in HRI, ultimately contribut-
ing to a more inclusive and diverse technological landscape.

https://github.com/Pequi-Mecanico-Home/CROS_2025
https://github.com/Pequi-Mecanico-Home/CROS_2025


The methodology for training wake word detection models is
detailed in Section III. The deployment process is discussed
in Section IV. Experimental results, including a comparison
of different approaches, are presented in Section V. Real-
world considerations of our approach in the robotics field are
explained in Section VI. Finally, Section VII concludes the
paper and outlines future research directions.

II. RELATED WORK

Wakeword detection is a foundational component of voice-
activated systems, enabling devices to respond to specific
trigger phrases. Traditional methods, such as those used in
commercial platforms (e.g., Amazon Alexa, Google Assistant),
rely heavily on large, curated datasets of real speech recordings
[1], [2]. OpenWakeWord [3] mitigates this dependency by
leveraging synthetic data generation, while also democratizing
wakeword development through modular architectures and
lightweight inference, but its current implementation under-
performs the phonetic and prosodic nuances of Brazilian
Portuguese due to limited speaker diversity and reliance on
generic Text to Speech (TTS) models [7]. Recent advances
in few-shot learning [5] and synthetic data generation have
emerged to address data scarcity, yet their integration into end-
to-end wakeword pipelines—especially for underrepresented
languages—remains underexplored.

Synthetic data generation via TTS systems offers a promis-
ing solution to dataset limitations. Zero-shot TTS models,
such as XTTS [6], enable high-quality speech synthesis across
diverse speakers without requiring extensive training data for
each voice. These models have been applied to augment
automatic speech recognition (ASR) systems [8] , but their
potential for wakeword-specific training—particularly in mul-
tilingual contexts—has not been fully realized. For instance,
while previous work in Portuguese ASR [9] demonstrates the
utility of synthetic data, it’s typically oriented toward general
purpose speech recognition rather than tailored wakeword
detection. By leveraging zero-shot TTS [6], our approach
simulates multi-speaker environments and mitigates biases
inherent in small real-world datasets, a critical advancement
for languages with limited resources.

In robotics, voice interaction systems often rely on modular
frameworks like the Robot Operating System (ROS2) [11]
for integration. Prior studies, such as [10], demonstrate ROS-
based speech recognition for navigation and manipulation
tasks, but these implementations typically depend on off-the-
shelf wakeword detectors with limited customization. ROS2
[11], with its enhanced real-time capabilities and decentralized
architecture, provides a robust foundation for deploying low-
latency voice interfaces. However, existing solutions [12],
[13] often separate synthetic data generation from deployment
architecture, such as ROS2 [11], resulting in fragmented
workflows. This gap is especially pronounced in regions like
Brazil, where Portuguese-language robotic applications require
tailored, resource-efficient solutions.

III. TRAINING

A. Dataset

To evaluate the proposed approaches and validate the effec-
tiveness of our pipeline, we selected a set of wakewords that
are representative of critical commands for robotic teleoper-
ation: ”frente” (forward), ”direita” (right), ”esquerda” (left),
and ”pare” (stop). These commands were chosen due to their
high relevance in navigation and control tasks, making them
ideal for testing the robustness and accuracy of the wakeword
detection system.

1) Training Data: Training and validation were conducted
exclusively using synthetic data, generated through the XTTS
[6] zero-shot Text to Speech (TTS) model, which leverages a
reference speaker to produce high-quality audio with diverse
speaker styles. This approach simulates a multi-speaker envi-
ronment, ensuring that the model is exposed to a wide range of
phonetic and prosodic variations during training. To maximize
dataset diversity, we explored two synthesis techniques:

• Single-Speaker Synthesis: Audio samples were gener-
ated using individual reference speakers, preserving the
unique characteristics of each voice.

• Multi-Speaker Combination: Audio samples were cre-
ated by combining features from multiple reference
speakers, further enhancing the dataset’s diversity and
robustness.

The reference speakers used to generate the XTTS [6] speech
samples were derived from the CML TTS Portuguese 50
dataset [18], which provides 50 distinct speakers for training
and experimentation.

For each wakeword (”frente”, ”direita”, ”esquerda”, and
”pare”), a dedicated dataset of 10,000 synthetic training sam-
ples and 1,000 validation samples was generated. Each sample
includes both the wakeword (e.g., ”frente”) and its corre-
sponding negative version (speech without the wakeword).
The generation process for each dataset, considering only
the synthesis phase, required approximately 1.32 hours. To
generate negative samples, we employed two strategies:

• Random Portuguese Words: Negative samples were cre-
ated using random words from the Portuguese language,
ensuring variability in the dataset.

• Phoneme-Based Synthesis: Negative samples were gen-
erated by combining phonemes to form nonsensical
words, providing a broader range of phonetic patterns
without semantic meaning.

By relying solely on synthetic data for training and validation,
we demonstrate the feasibility of overcoming the scarcity
of annotated datasets, particularly for low-resource languages
like Brazilian Portuguese. The use of XTTS [6], with its
multilingual capabilities and high-quality synthesis, ensures
that the dataset is not only diverse but also adaptable to other
languages and applications.

2) Test Data: For the evaluation of this proposed pipeline,
we created a Brazilian Portuguese wakeword dataset contain-
ing 2,329 recordings of the activation words . The samples



were collected from 30 different speakers, ensuring diversity
in voice characteristics and intonation. The total duration of
the recordings is 40 minutes and 47 seconds, with an average
length of approximately 1 second per sample. The dataset has
a standard sampling rate of 16 kHz, ensuring compatibility
with speech recognition models.

TABLE I
DISTRIBUTION OF RECORDINGS PER WAKEWORD

Wakeword Number of recordings

Direita 624
Esquerda 514
Frente 597
Pare 594

This dataset was specifically developed for this work, al-
lowing the evaluation of the wakeword recognition system
in Portuguese in a realistic scenario with natural speech
variations.

B. Training Process

The training process for our wakeword detection pipeline
was designed to ensure robustness and generalization, par-
ticularly for the Brazilian Portuguese language. Below, we
describe the key steps and methodologies employed, including
the generation of synthetic data, the training of the OpenWake-
Word [3] model, and the data augmentation techniques applied.

1) Baseline Establishment: To establish a baseline, we first
evaluated the performance of the OpenWakeWord [3] frame-
work using synthetic data generation pipeline. This baseline
provided a reference point for comparing the effectiveness
of our proposed improvements. However, the baseline results
revealed significant limitations, particularly in detecting wake-
words in Brazilian Portuguese, as the synthetic data generated
by OpenWakeWord lacked the phonetic and prosodic diversity
required for robust performance in this language.
To bridge the gap between English and Brazilian Portuguese,
we initially attempted to approximate the target wakewords
(”frente,” ”direita,” ”esquerda,” and ”pare”) using English
phonemes. This involved generating synthetic samples with
phonetically similar English words, such as ”dee-raytuh”
(for ”direita”), ”iskair-duh” (for ”esquerda”), ”freynt” (for
”frente”), and ”par-ree” (for ”pare”). While this approach
provided a starting point, it was insufficient for capturing the
nuances of Brazilian Portuguese, highlighting the need for a
more tailored solution.

2) General Training with Data Augmentation and
OpenWakeWord-Inspired Configurations:

• Synthetic Data Generation with XTTS: We use the
XTTS [6] zero-shot TTS model to generate high-quality
synthetic audio samples for the target wakewords in the
manner described above.

• Data Augmentation: To enhance the robustness of the
model, we applied several data augmentation techniques,
including:

– Room Impulse Response (RIR): Simulated differ-
ent acoustic environments by convolving the syn-
thetic audio with RIR recordings [14].

– Background Noise Mixing: Mixed the synthetic
audio with background noise from datasets such as
Audioset and FMA to simulate real-world conditions
[16].

– Pitch Shifting and Time Stretching: Applied pitch
shifting and time stretching to introduce additional
variability in the training data [17].

In addition to these, other augmentation techniques were
also employed, such as equalization, distortion, and dy-
namic range adjustments, ensuring a diverse and robust
dataset.

• Training Parameters: The training process was con-
ducted using the following parameters:

– Batch Size: 1024 for background noise samples, 50
for adversarial negative samples, and 50 for positive
samples.

– Model Architecture: A DNN-based model with a
layer size of 32, chosen for its balance between
performance and inference speed.

– Training Steps: 50,000 steps.
The selection of these hyperparameters was also influenced by
the experiments reported in OpenWakeWord, which utilise a
similar amount of data to the present work, thus serving as
an initial reference for effective configurations with limited
datasets.

IV. DEPLOYMENT

For deployment on a real robot, we developed a system
utilizing ROS2 [11] communications. Given that ROS2 is
built on an abstraction layer, it facilitates a more accessible
understanding, particularly for beginners, while also support-
ing a multi-platform environment. The system incorporates a
Microphone Node for raw data extraction and preprocessing,
along with a WakeWord Node that operates using the trained
wakeword model. The design certifies that the Microphone
Node can support multiple processes requiring microphone
input without encountering channel conflicts. Consequently,
the WakeWord Node exclusively accesses the audio data
published by the Microphone Node via a dedicated topic.

A. Microphone Node
The node is designed to continuously acquire audio data

from the user-specified input device. To maintain compat-
ibility with the processing pipeline, the acquired audio is
resampled from its default sampling rate to a standardized
target rate matching the microphone input. The resampled
data is appropriately reshaped, and published as a ROS2
[11] message within a designated ROS2 topic for further
processing. This method ensures that the audio data stream can
be integrated into various ROS2-based robotic applications.
By standardizing the format, buffer size, and sampling rate,
the node facilitates efficient data handling and interoperability



TABLE II
ACCURACY, RECALL, AND F1 RESULTS FOR DIFFERENT APPROACHES

Keyword Approach Positive Generation Negative Generation Accuracy Recall F1

Direita OpenWakeWord * * 0.78 0.17 0.58
Esquerda OpenWakeWord * * 0.89 0.52 0.81
Frente OpenWakeWord * * 0.76 0.07 0.50
Pare OpenWakeWord * * 0.75 0.01 0.43

Direita XTTS Combination Words 0.97 0.90 0.96
Esquerda XTTS Combination Words 0.92 0.65 0.87
Frente XTTS Combination Words 0.93 0.73 0.90
Pare XTTS Combination Words 0.88 0.65 0.83

Direita XTTS Combination Phonemes 0.96 0.85 0.95
Esquerda XTTS Combination Phonemes 0.94 0.74 0.90
Frente XTTS Combination Phonemes 0.97 0.88 0.96
Pare XTTS Combination Phonemes 0.89 0.71 0.85

Direita XTTS Single Phonemes 0.95 0.83 0.94
Esquerda XTTS Single Phonemes 0.96 0.84 0.95
Frente XTTS Single Phonemes 0.96 0.86 0.95
Pare XTTS Single Phonemes 0.88 0.69 0.84

Direita Porcupine * * 0.65 0.14 0.48
Esquerda Porcupine * * 0.69 0.10 0.47
Frente Porcupine * * 0.65 0.14 0.48
Pare Porcupine * * * * *

within the processing pipeline. Additionally, the structured
publication of audio data within a ROS2 [11] topic favors
modularity, allowing multiple downstream components to ac-
cess and utilize the information for tasks such as wakeword
detection, central to our implementation, as well as speech
recognition and environmental sound analysis.

B. WakeWord Node

Our wakeword detection system is also implemented as a
ROS2 [11] node that processes incoming audio data from the
previously described microphone topic. The audio signals are
analyzed using our WakeWord model, which is dynamically
loaded from a specified configuration path, allowing flexible
model selection. The inference model continuously evaluates
the incoming audio, maintaining a prediction buffer that tracks
detection scores over time. When the latest score exceeds a
predefined threshold the system triggers a wakeword event
by publishing a Boolean message to the topic. With our ap-
proach, it enables integration with various components in any
ROS2 [11] system, supporting both voice-based applications
and other scenarios requiring wakeword functionality, while
adhering to our deployment objectives.

V. RESULTS

The results of our experiments are presented in Table
II, which compares the performance of different keyword
detection approaches in terms of Accuracy, Recall, and F1-
score. The approaches evaluated include OpenWakeWord [3],
along with a comercial approach Porcupine [19], and several
configurations of our proposed pipeline using the XTTS [6]
zero-shot Text to Speech (TTS) model with different synthesis
strategies for positive and negative sample generation. Below,
we provide a detailed analysis of the results.

1) XTTS-Based Approaches: All XTTS-based approaches
demonstrated significant improvements over the OpenWake-
Word [3] baseline, showcasing the effectiveness of synthetic
data generation using the XTTS [6] zero-shot TTS model.
Among these, the Single + Phonemes approach, which uses
single-speaker synthesis for positive samples and phoneme-
based negative samples, emerged as the most robust across the
tested wakewords (”frente,” ”direita,” ”esquerda,” and ”pare”).
This approach achieved Accuracy ranging from 0.88 to 0.96,
Recall from 0.69 to 0.86, and F1-score from 0.84 to 0.95.

The random combination of a group of speakers may not
have contributed as positively as expected, indicating that one
of our initial hypothesis was not exactly correct. However, the
combinatorial strategy came close to the single results. There
is room for further studies in order to optimize the way in
which the combination is accomplished. By using phoneme-
based negative samples, this approach ensures that the model
is exposed to a broader range of phonetic patterns, including
nonsensical combinations that do not correspond to real words.
This strategy enhances the model’s ability to distinguish wake-
words from unrelated speech, even in challenging scenarios.

2) Comparison with OpenWakeWord: In contrast to the
XTTS-based approaches, the OpenWakeWord [3] baseline
achieved significantly lower performance, with Recall ranging
from 0.07 to 0.52 and F1-score from 0.43 to 0.81, despite
its relatively high Accuracy (0.75 to 0.89). This indicates
that OpenWakeWord struggles to correctly detect wakewords
in low resource languages, particularly in scenarios requiring
high phonetic and prosodic diversity, such as Brazilian Por-
tuguese.

3) Comparison with Porcupine: Unlike the XTTS-based
approaches, the Porcupine [19] wake word detection system,
a paid API, demonstrated lower performance across most



metrics. While its accuracy ranged from 0.65 to 0.69, its recall
was notably low (0.11 to 0.15), leading to F1-scores around
0.48. This suggests that Porcupine struggles with consistent
wake word detection, particularly in handling the phonetic and
prosodic characteristics of Brazilian Portuguese. Moreover, the
API does not support short keywords, which prevented us from
evaluating the keyword ”Pare”. This limitation further empha-
sizes Porcupine’s difficulty in handling brief wake words.

VI. DOWNSTREAM APPLICATIONS

With the implemented architecture, we have developed
a system capable of interacting in a modular fashion. As
previously mentioned, the WakeWord node facilitates com-
munication with other ROS2 [11] modules without disrupting
the overall system functionality. This modularity enhances the
applicability of the system across various use cases, including
robot teleoperation, and even emergency scenarios.

Fig. 1. Teleoperation Example

Teleoperation is a core functionality for several robotic
systems, the most common approach is via Joystick or Key-
board, demanding some knowledge related to the devices.The
data used in training in the previous sections address an
implementation of such functionality enabled via WakeWord
Detection, increasing the robot accessibility. This feature can
be implemented by transmitting the output of the WakeWord
Node to a Teleoperation Node that controls the mobile base.

Fig. 2. Alternative Emergency Stop Example

Ensuring that robots comply with safety standards is crucial,
especially in non controlled environments. In situations where
an emergency stop button is not easily accessible, a wakeword
can serve as an alternative mechanism to halt or redirect the
robot’s movement. To achieve this, we establish communica-
tion between the WakeWord publishing node and a secondary
boolean topic capable of interfacing with the robot’s mobile
base. When the system detects the word ”stop” it updates the
corresponding topic value, preventing the wheels from moving.

In common applications, such as domestic robotics, wake-
word recognition enables service robots and voice assistants

Fig. 3. ASR Triggering Example

to respond naturally to human commands, thereby enhancing
user interaction. In our implementation, the ASR (Automatic
Speech Recognition) node is designed to communicate with
the previously mentioned Microphone node. However, the
ASR model only transcribes and publishes audio data after
the WakeWord node confirms the detection of the target
word. This procedure ensures that audio processing occurs
exclusively when human interaction with the robot is explicitly
detected, optimizing system efficiency and reducing unneces-
sary computation.

VII. CONCLUSION

In this paper, we have presented a comprehensive pipeline,
covering data generation, model training, and deployment, to
facilitate the integration of wakeword recognition in robotics
applications. Our approach provides an alternative solution for
the research community, particularly for non-English-speaking
regions, enabling broader accessibility and fostering further
development in this field. By offering detailed instructions
on data generation using Zero-Shot Text-to-Speech (TTS),
training an ONNX model, and deploying it within a ROS2 [11]
paradigm, we aim to expand the applicability of wakeword
recognition beyond English-speaking contexts.

One of the limitations of the present approach is the
linguistic coverage of XTTS [6], the state-of-the-art Zero-Shot
TTS model for Portuguese. Although XTTS performs well
for Portuguese, the pipeline under discussion remains con-
strained to the languages currently supported by XTTS. This
limitation has a direct impact on the immediate applicability
of the pipeline to other low-resource languages.Additionally,
while the computational demands are manageable, the storage
requirements for generated audio remain a key consideration.

We believe that our work contributes to making wakeword
detection more accessible and adaptable, paving the way for
future advancements in human-robot interaction.
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